МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой геоэкологии и мониторинга окружающей среды факультет Куролап С.А. геоэкологии подпись, расшифровка подписи 30.05. 2022 г

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.29 Геоинформационные системы в экологии и природопользовании

1. Шифр и наименование направления подготовки:

05.03.06 – Экология и природопользование

2. Профиль подготовки: Геоэкология

3. Квалификация (степень) выпускника: бакалавр

4. Форма обучения: очная

- **5. Кафедра, отвечающая за реализацию дисциплины:** кафедра геоэкологии и мониторинга окружающей среды
- **6. Составитель программы:** Нестеров Юрий Анатольевич, кандидат географических наук, доцент
- 7. **Рекомендована:** Протокол о рекомендации: НМС ф-та географии, геоэкологии и туризма от 04.05.2022 №8

8. Учебный год: 2023/2024 Семестр: 4

9. Цели и задачи учебной дисциплины:

Целью дисциплины является:

- ознакомление с возможностями использования геоинформационных систем для решения геоэкологических задач проектирования, управления, мониторинга;
- освоение основ пространственного анализа для целей выявления пространственных особенностей изучаемых явлений как естественного, так и антропогенного характера;
- освоение основ моделирования возможных сценариев развития изучаемых эколого-географических явлений для целей прогноза, оценки и управления. Задачи курса состоят:
- в обучении подбору оптимальной ГИС для решения конкретных вопросов сферы профессиональных интересов;
- в формировании правильной структуры сбора, хранения и обработки информации и приобретения устойчивых навыков в подготовке растровой основы для дальнейшей работы в ГИС; регистрации растровой основы в выбранной системе координат; создании слоев и сопровождающих баз географический данных; умении создавать запросы и управлять данными из таблиц;
- в умении составлять тематические карты, используя встроенные аппаратные средства; производить пространственный анализ объектов и явлений экологического характера.
- в умении подготавливать информацию для потребителя и выводить, в случае необходимости на печатающие устройства.
- **10. Место учебной дисциплины в структуре ООП**: дисциплина относится к обязательной части учебного рабочего плана по направлению бакалавриата 05.03.06 Экология и природопользование (Б1).

11. Планируемые результаты обучения по дисциплине (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код	Индикатор	Планируемые результаты обучения
ОПК -5	Способен понимать принципы работы информационных технологий и решать стандартные задачи профессиональной деятельности в области экологии, природопользования и охраны природы с использованием информационнокоммуникационных, в том числе геоинформационных технологий	ОПК- 5.1	Осуществляет поиск, сбор, хранение, обработку, представление информации при решении задач профессиональной деятельности Подбирает и использует информационные технологии при решении задач профессиональной деятельности	Знать: современные способы поиска, обработки и анализа экологогеографических данных, полученных как из открытых источников, так и в результате полевых наблюдений; Уметь: выбирать оптимальные алгоритмы решения возникающих задач в сфере профессиональных интересов; Владеть: базовыми навыками информационной безопасности, обеспечивающими оперативную обработку данных при решении профессиональных задач. Знать: теоретические основы построения геоинформационных систем, их функциональные возможности, возможные сферы использования для решения профессиональных задач различного территориального уровня (локальных, региональных, глобальных); Уметь: выбирать оптимальные функциональные возможности ГИС-пакетов для решения прикладных задач, правильно

	составлять алгоритм своих действий для
	организации оперативной работы в ГИС;
	Владеть: базовыми навыками работы в
	ГИС: выборе оптимальных электронных
	слоев для пространственного анализа,
	владеть навыками создания электронных
	слоев и сопровождать показанные на них
	объекты атрибутивными характеристика-
	ми в виде базы данных.

12. Объем дисциплины в зачетных единицах/час. — 2 / 72. Форма промежуточной аттестации – зачет.

13. Трудоемкость по видам учебной работы

	Трудоемкость (часы)		
Вид учебной работы		По семестрам	
,	Всего	4 семестр	
Аудиторные занятия	42	42	
в том числе: лекции	14	14	
практические			
лабораторные	28	28	
Самостоятельная работа	30	30	
Форма промежуточной аттестации	зачет	зачет	
Итого:	72	72	

13.1 Содержание дисциплины

№ п/п	Наименование раз- дела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК*
		1. Лекции	
1.1	Введение	Предмет экоинформатики. Место экоинформатики в системе наук. Взаимосвязи с картографией, дистанционным зондированием и информатикой. Основные термины экоинформатики. Данные, информация, знания: различия между ними. Понятие об измерениях, наблюдениях, мониторинге.	https://edu.vsu.ru/ course/view.php?i d=2401
1.2	Источники данных для работы ГИС	Источники данных и их типы, в том числе литературные, статистические, картографические, аэрокосмические, геофизические, геохимические и др.	
1.3	ГИС и их классифи- кация	Понятие об информационных и информационно- поисковых системах, банках данных, географических информационных системах (ГИС) и информационно- геоэкологических системах. Классификации ГИС по территориальному охвату, по целям, по тематике.	
1.4	Структура ГИС	Структура ГИС. Понятие о базах данных и их разновидностях. Позиционные, тематические, выходные характеристики в базах данных. История развития ГИС. Основные черты развития экоинформатики в России.	
1.5	Интеграция данных в ГИС	Регистрация, ввод и хранение данных. Измерительно- наблюдательные системы и сети. Технологии ввода данных. Структурирование пространственных данных.	
1.6	Представление дан- ных в ГИС	Разновидности растрового представления данных (пирамидальное, квадратомическое дерево и др.), вектор-	

		HOTO EDOCATOREOUNG (SOCOTONICTVICHI LO TORO ESSERVACIONE			
		ного представления (бесструктурные, топологические, гиперграфовые, решетчатые модели) и комбинирован-			
		ного. Преобразования типа "растр-вектор" и "вектор-			
		растр".			
1.7		Операции вычислительной геометрии. Операции с			
1.7		трехмерными объектами. Блок моделирования ГИС.			
	Пространственный	Понятие о методах математического моделирования			
	анализ в ГИС	сценариев развития экосистем. Операции простран-			
		ственного анализа.			
1.8		Краткий обзор программных средств, используемых в			
	Программные сред-	России. Коммерческие пакеты программ (ARC/INFO,			
	ства ГИС	ArcView, MicroStation, MapInfo, IDRISI, GeoGraf/GeoDraw			
		и др.).			
1.9		Опыт применения ГИС для изучения окружающей сре-			
	Современное состо-	ды (вопросы мониторинга и моделирования окружаю-			
	яние ГИС их приме-	щей среды, экологических экспертиз хозяйственных			
	нение и развитие	проектов, моделирования миграции тяжелых металлов			
	и радионуклидов в геосистемах и др.).				
	2. Лабораторные работы				
2.1		Подготовка растрового изображения для интеграции в			
	Интеграция данных в	ГИС. Привязка растра.			
2.2	ГИС.	Векторизация объектов различного пространственного			
	Представление дан-	характера (точечные, линейные, площадные).			
2.3	ных в ГИС	Подготовка баз данных по векторизованным объектам			
2.4		Построение тематических карт.			
2.5		Оценка взаимного расположения объектов (удален-			
	Пространственный	ность, пересечение, наложение и т.д.).			
2.6	анализ в ГИС	Геокодирование.			
2.7		Оценка равномерности расположения объектов и тяго-			
		тения между ними.			
2.8		Корреляционно-регрессионный анализ.			

13.2 Темы (разделы) дисциплины и виды занятий

Nº		Виды занятий (часов)				
п/ п	Наименование темы (разде- ла) дисциплины	Лекции	Практи- ческие	Лабораторные	Самостоя- тельная работа	Всего
1	Введение	2	-	-	2	4
2	Источники данных для рабо- ты ГИС	2	-	-	2	4
3	ГИС и их классификация	2	-	-	2	4
4	Структура ГИС	2	-	-	2	4
5	Интеграция данных в ГИС	2	-	10	2	8
6	Представление данных в ГИС	2			4	12
7	Пространственный анализ в ГИС	2		18	6	26
8	Программные средства ГИС				4	4
9	Современное состояние ГИС их применение и развитие				6	6
	Итого:	14	-	28	30	72

14. Методические указания для обучающихся по освоению дисциплины

Необходима регулярная работа с текстом конспектов лекций для понимания и освоения материала предшествующей и последующей лекций. По указанию преподавателя необходимо регулярно выполнять домашние задачи, выполнять контрольные тесты в ходе текущей аттестации (по каждой пройденной теме), подготовить презентацию по рекомендованной теме к итоговой зачетной аттестации.

При подготовке к промежуточной аттестации студенты изучают и конспектируют рекомендуемую преподавателем учебную литературу по темам лекционных и лабораторных занятий, самостоятельно осваивают понятийный аппарат.

Методические рекомендации по организации самостоятельной работы студентов включают:

- использование электронных учебников и ресурсов Интернет;
- методические разработки с примерами решения типовых задач в сфере оценки риска для здоровья населения;
- использование лицензионного программного обеспечения для улучшения навыков работы в ГИС-пакетах.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

Nº ⊓/⊓	Источник
1	Геоинформатика: в 2 кн.: учебник для студ. вузов, обуч. по специальностям 012500 "География", 013100 "Экология", 013400 "Природопользование", 013600 "Геоэкология", 351400 "Прикладная информатика (по областям)" / Е.Г. Капралов [и др.]; под ред. В.С. Тикунова .— М.: Академия, 2008— (Высшее профессиональное образование. Естественные науки).— ISBN 978-5-7695-4199-5. Кн. 1 .— 2-е изд., перераб. и доп. — 2008 .— 373, [2] с., [8] л. цв. ил.: ил.
2	Геоинформатика: в 2 кн.: учебник для студ. вузов, обуч. по специальностям 012500 "География", 013100 "Экология", 013400 "Природопользование", 013600 "Геоэкология", 351400 "Прикладная информатика (по областям)" / Е.Г. Капралов [и др.]; под ред. В.С. Тикунова .— М.: Академия, 2008— (Высшее профессиональное образование. Естественные науки).— ISBN 978-5-7695-4199-5. Кн. 2 .— 2-е изд., перераб. и доп. — 2008 .— 379, [2] с.: ил.
3	Жуковский, О.И. Геоинформационные системы / О.И. Жуковский ; Министерство образования и науки Российской Федерации, Томский Государственный Университет Систем Управления и Радиоэлектроники (ТУСУР). – Томск : Эль Контент, 2014. – 130 с. : схем., ил. – Режим доступа: по подписке. – URL: http://biblioclub.ru/index.php?page=book&id=480499

б) дополнительная литература:

Nº	Источник				
п/п	ИСТОЧНИК				
4	Ловцов, Д.А. Геоинформационные системы / Д.А. Ловцов, А.М. Черных. – Москва : Российская академия правосудия, 2012. – 191 с. – Режим доступа: по подписке. – URL: http://biblioclub.ru/index.php?page=book&id=140619				
5	Коротаев, М. В. Применение геоинформационных систем в геологии : учебное пособие для студ. и магистрантов вузов, обуч. по направлению 020300 - "Геология" / М.В. Коротаев, Н.В. Правикова ; Моск. гос. ун-т им. М.В. Ломоносов, Геол. фак. — М. : КДУ, 2008 .— 171 с. : ил .— Библиогр.: с.162-163 .— ISBN 978-5-98227-467-0				

6	Практикум по информационным технологиям: учебное пособие для студ. вузов, обуч. по специальностям 020802 - "Природопользование", 020804 - "Геоэкология" и по направлению 020800 - "Экология и природопользование" / С.А. Куролап [и др.]; Воронеж. гос. ун-т; под ред. В.С. Тикунова, С.А. Куролапа. — Воронеж: Воронеж. гос. ун-т, 2008. — 265 с.
7	Архив журнала Геодезия и картография http://geocartography.ru/archive/

в) ресурсы интернет:

№ п/п	Источник
8	https://edu.vsu.ru/course/view.php?id=2401
9	http://biblioclub.ru

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Геоинформатика: в 2 кн.: учебник для студ. высш. учебн. заведений / [Е.Г. Капралов, А.В. Кошкарев, В.С. Тикунов и др.]; под ред. В.С. Тикунова. — 3-е изд., перер. и доп. Кн. 1 — М.: Издательский центр «Академия», 2010. — 400 с. http://nashol.com/2012111568015/geoinformatika-kapralov-e-g-koshkarev-a-v-tikunov-v-s-2010.html
2	Геоинформатика: в 2 кн.: учебник для студ. высш. учебн. заведений / [Е.Г. Капралов, А.В. Кошкарев, В.С. Тикунов и др.]; под ред. В.С. Тикунова. — 3-е изд., перер. и доп. Кн. 2 — М.: Издательский центр «Академия», 2010. — 432 с. http://nashol.com/2012111568015/geoinformatika-kapralov-e-g-koshkarev-a-v-tikunov-v-s-2010.html
3	Геоинформационное картографирование в регионах России [Текст]: материалы VIII всероссийской научно-практической конференции, [г. Воронеж], 20 декабря 2016 г Воронеж: Изд-во «Научная книга», 2016. – 139 с. https://elibrary.ru/item.asp?id=28985605.pdf
4	Геоинформационное картографирование в регионах России [Текст]: материалы VII всероссийской научно-практической конференции, [г. Воронеж], 10-12 декабря 2015 г Воронеж: Изд-во «Научная книга», 2015. – 166 с. https://elibrary.ru/item.asp?id=25574449.pdf
5	Геоинформационное картографирование в регионах России [Текст]: материалы VI всероссийской научно-практической конференции, [г. Воронеж], 25 ноября 2014 г Воронеж: Изд-во «Научная книга», 2014. – 120 с. https://elibrary.ru/item.asp?id=25542802.pdf
6	Геоинформационное картографирование в регионах России [Текст]: материалы V всероссийской научно-практической конференции, [г. Воронеж], 19-22 сентября 2013 г. – Воронеж: Изд-во «Научная книга», 2013. – 184 с. https://elibrary.ru/item.asp?id=25800573.pdf
7	Геоинформационное картографирование в регионах России [Текст]: материалы IV всероссийской научно-практической конференции, [г. Воронеж], 15 ноября 2012 г. – Воронеж: изд-во «Научная книга», 2012. – 153 с https://elibrary.ru/item.asp?id=25769954.pdf

17. Образовательные технологии, используемые для реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

Программа курса может быть реализована с применением дистанционных технологий на платформе «Образовательный портал «Электронный университет ВГУ». Режим доступа: по подписке. – https://edu.vsu.ru/course/view.php?id=2401

18. Материально-техническое обеспечение дисциплины:

Для лекционных занятий — учебная аудитория, оснащенная специализированной мебелью, комплектом персональных компьютеров с мониторами, ПО-OfficeSTD 2013/ "Intel Celeron", плоттер A4, принтер лазерный HP, принтер струйный HP, сканер планшетный Epson, лицензионное ПО: "MapInfo"; GPS-приемники GIS класса, мультимедиа-проектор Acer

19. Оценочные средства для проведения текущей и промежуточной аттестаций:

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины	Компетенция	Индикатор достижения компетенции	Оценочные сред- ства		
1	Источники данных для работы ГИС	ОПК-5	ОПК-5.1	Устный опрос		
2	ГИС и их классификация	ОПК-5	ОПК-5.1	Устный опрос		
3	Структура ГИС	ОПК-5	ОПК-5.1	Лабораторные рабо-		
٥				ты, устный опрос		
4	Интеграция данных в ГИС	ОПК-5	ОПК-5.2	Ситуационная задача,		
_ 4	·			устный опрос		
5	Пространственный анализ в	ОПК-5	ОПК-5.2	Лабораторные рабо-		
5	ГИС			ты, устный опрос		
6	Пространственный анализ в	ОПК-5	ОПК-5.2	Ситуационная задача,		
O	ГИС	OTIK-3	Of IK-3.2	устный опрос		
7	Современное состояние ГИС	ОПК-5	ОПК-5.2	Мультимедийная		
их применение и развитие		OT IN-5	OI IIX-3.2	презентация		
	Промежуточная аттестация.форма контроля - зачет					

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

- лабораторных работ, выполняемых по тематике:

Подготовка растрового изображения для интеграции в ГИС. Регистрация растра.		
Векторизация объектов различного пространственного характера.		
Подготовка баз данных по векторизованным объектам.		
Построение тематических карт.		
Пространственный анализ. Оценка взаимного расположения объектов (удаленность, пересече-		
ние, наложение и т.д.).		
Пространственный анализ. Геокодирование. Буферные зоны.		
Пространственный анализ. Равномерность расположения.		
Пространственный анализ. Построение гридов.		

- терминологического словаря к зачету

Ниже приводится фрагмент словаря терминов, которыми должен владеть обучающийся по предмету «ГИС в экологии и природопользовании». Объяснение содержания терминов используется как дополнительные вопросы к вопросу зачета. Всего 75 терминов.

Аддитивная цветовая модель RGB — модель, в которой нужный цвет получается смешением световых излучений трех первичных цветов: красного (Red), зеленого (Green) и синего (Blue). Модель применяется для излучающих источников света. Смешение 100 % первичных цветов дает белый цвет. Их полное отсутствие — черный.

Аппаратное средство представляет собой компьютер, на котором установлено программное обеспечение, функционирующее на базе различных операционных систем. Атрибуты сущности – это допустимые характеристики какой-либо сущности. Базы данных представляют собой совокупность определенным образом упорядоченной информации. описывающей объекты предметной области.

Банк данных — это система, включающая организационные, технические, технологические, математические, программные и языковые компоненты, обеспечивающие централизованное накопление и коллективное использование информации, поступающей в базы данных.

Блок - наименьшая самостоятельная единица любой системы, состоящей из нескольких модулей.

Векторизатор – программное средство для выполнения растрово-векторного преобразования (векторизации) пространственных данных.

Внутренняя точка отрезка — это воображаемая точка отрезка дуги, не являющаяся ни вершиной, ни узлом.

Генерализация — это процесс обобщения изображения объектов с целью отображения наиболее существенных их свойств и характеристик при переходе от крупного масштаба изображения к более мелкому.

Геоинформатика — это ГИС-технология сбора, хранения, преобразования, отображения и распространения пространственно-координированной информации.

Геоинформационное картографирование представляет собой раздел картографии, осуществляющий автоматизированное составление и использование карт на основе геоинформационных технологий и баз знаний.

Геоинформационное моделирование — это процесс преобразования моделей пространственных объектов, обеспечивающий корректировку их форм по изменившимся значениям таблиц баз данных.

Геокодирование — это процесс присвоения геоданным кодовых обозначений, которые позволяют однозначно позиционировать объекты относительно принятой системы координат.

Геоцентрическая система координат — это система, начало которой расположено в центре масс Земли.

ГИС представляет собой аппаратно-программный человеко-машинный комплекс, обеспечивающий сбор, обработку, преобразование и отображение пространственно-координированных данных, интеграцию данных и знаний о территории для их эффективного использования в процессе решения научных и прикладных географических задач, связанных с инвентаризацией, анализом, моделированием, прогнозированием и управлением окружающей средой.

ГИС-технология — это система взаимосвязанных процедур геоинформационного моделирования процессов изготовления и использования карт, основанная на функциональных возможностях ГИС.

Глубина цвета — это разрядность обработки цвета, называемая цветопередачей, предназначенная для описания максимального количества цветов, которое может воспроизвести сканер.

Графический элемент представляет собой простейший элемент, используемый для построения изображений (точка, линия, полилиния, область).

Данные (от латинского datum — факт) в геоинформатике представляют собой известные сведения об объектах окружающего мира, результаты наблюдений и измерений этих объектов. Элемент данных содержит три главные компоненты: атрибутивные сведения, географические (метрические) сведения, временные сведения (момент или период времени).

Дигитайзер — прибор для определения координат точек углов поворота объектов, изображенных на графическом материале.

Дигитализация — это процесс преобразования графических изображений в цифровую форму.

- ситуационных задач

Ниже приводится пример ситуационная задача из разделов «Интеграция данных в ГИС» и «Представление данных в ГИС», которая может быть использована для контроля во время промежуточной аттестации.

Тема: Регистрация растрового изображения в ГИС MapInfo

Особенностью создания и использования информации в ГИС является ее географическая характеристика — местоположение. Наиболее распространенной характеристикой местоположения принято считать координаты. Современные ГИС-приложения позволяют осуществить координатную привязку объектов более чем в 40 системах координат, а также в случае необходимости создавать свои собственные координатные системы.

<u>Цель работы.</u> Создание цифровой электронной картографической основы для векторного представления графических данных на основе зарегистрированного растрового изображения.

<u>Исходные материалы.</u> Сканированные растровые изображение карты Тамбовской области масштаба 1:500000 с изображением сетки параллелей и меридианов. Сканированная и сшитая карта Воронежской области масштаба 1:500000 с изображением параллелей и меридианов.

<u>Примечание:</u> Если координатная сетка отсутствует и координаты изображения неизвестны, то можно создать собственную систему координат, основанную на принципах Декартовой системы. Размеры фрагмента устанавливаются путем измерения ширины и высоты растрового фрагмента. Затем в масштабе изображения рассчитываются его реальные размеры: левому нижнему углу присваиваются координаты x=0, y=0; а правому верхнему — x=max, y=max.

Ход выполнения задания.

- 1. Запустить программу MapInfo: *Пуск>Программы> MapInfo*, из указанной директории открыть растровый фрагмент топографической карты через диалог: *Файл> Открыть таблицу (тип файлов «растр»)*. Выбрать указанный преподавателем файл *Открыть>Регистрировать*.
- 2. В окне «Регистрация изображения» установить тип проекции и единицы измерении расстояний. При выборе проекции сначала задается категория проекции, а затем указывается ее тип, в котором построено предлагаемое растровое изображение (большинство российских топографических карт созданы в равноугольной поперечноцилиндрической проекции Гаусса Крюгера, координатная система «Пулково 1942»).
- 3. <u>Примечание:</u> Следует иметь в виду, что в ГИС-пакетах регистрация изображения по долготе и широте производится в десятичных градусах. Например: 50°30′ соответствует 50,5°. Для пересчета исходных координат предусмотрено использование инструмента «Degree Converter».
- 4. При помощи инструмента масштабирования «+/-» найти минимум четыре четкие точки и определить их координаты в заданной системе (плоская прямоугольная X, У, либо геодезическая долгота, широта) в выпадающем списке.
- 5. Последовательно указывая местоположения выбранных «твердых» точек, занести в графы окна *«Добавить контрольную точку»* значения соответствующих им координат.
- 6. Проверить значение ошибки координатной привязки (в пикселях), максимальное значение ошибки не более 10 пикселей.
- 7. Произвести корректировку местоположения «твердых точек» до ошибки привязки заданного уровня.
 - 8. Открыть зарегистрированное изображение.
- 9. Выполнить все действия, описанные ранее по отношению ко второму растровому фрагменту, выданному преподавателем.
- 10. Открыть в одном окне оба зарегистрированных фрагмента и сделать заключение о точности сводки смежных кромок растров, при необходимости произвести проверку правильности координатной привязки, до достижения правильной сводки растровых фрагментов.
- 11. Проверить масштабируемость изображения (Показать по-другому) и адекватность привязки (положение курсора).
- 12. Произвести подстройку изображения обоих растровых фрагментов по яркости и контрасту из диалога *Таблица> Растр> Подстройка изображения*.

13. Установить наличие файла координатной привязки в учебной директории и сделать вывод о его свойствах.

Критерии оценки решения ситуационной задачи

Зачтено: задача решена правильно, объяснение хода ее решения подробное, последовательное, с теоретическими обоснованиями (в т.ч. из лекционного курса) возможны единичные ошибки в деталях, обучающийся демонстрирует владение терминологией геоинформатики; ответы на дополнительные вопросы верные, могут быть допушены незначительные неточности.

Не зачтено: ответ на вопрос задачи дан неправильный. Объяснение хода ее решения недостаточно полное, непоследовательное, с ошибками, слабым теоретическим обоснованием (в т.ч. лекционным материалом), обучающийся демонстрирует плохое владение терминологией геоинформатики, ответы на дополнительные вопросы неправильные или отсутствуют.

-устного опроса

Вопросы к устному опросу

- 1. Этапы создания ГИС.
- 2. Технологии сбора данных в геоинформатике.
- 3. Функции и компоненты географической информационной системы.
- 4. Классификация ГИС по их проблемной ориентации.
- 5. Классификация ГИС по функциональным возможностям.
- 6. Классификация ГИС по типам представления географической информации.
- 7. Источники данных для ГИС и их типы.
- 8. Структура ГИС.

Критерии оценки устного опроса:

Зачтено – обучающийся уверенно отвечает на вопросы, свободно ориентируется в базовой терминологии геоинформатики и геоинформационных систем. Дополнительные вопросы не вызывают затруднений. Может допускать незначительные ошибки в ответах.

Не зачтено — обучающийся затрудняется отвечать на вопросы, не может привести примеры, иллюстрирующие положения ответа, терминологию геоинформатики и геоинформационных систем. Ответ на вопрос содержит существенные ошибки. Дополнительные вопросы вызывают серьезные затруднения.

20.2. Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

- контрольно-измерительных материалов, включающих 2 теоретических е вопроса и расчетную аналитическую задачу в области оценки экологических рисков для здоровья населения.

Теоретические вопросы:

- 1. Понятие об информационных и информационно-поисковых системах, банках данных, географических информационных системах (ГИС) и информационно-геоэкологических системах.
- 2. История развития ГИС. Основные черты развития экоинформатики в России.
- 3. Классификации ГИС по территориальному охвату, по целям, по тематике.

- 4. Структура ГИС. Понятие о базах данных и их разновидностях. Позиционные, тематические, выходные характеристики в базах данных.
 - 5. Регистрация, ввод и хранение данных. Измерительно-наблюдательные системы и сети.
 - 6. Технологии ввода данных. Структурирование пространственных данных.
- 7. Разновидности растрового представления данных (пирамидальное, квадратомическое дерево и др.). Преобразования типа "растр-вектор".
- 8. Векторное представление данных в ГИС (бесструктурные, топологические, гиперграфовые и др. модели). Преобразование «вектор растр».
 - 9. Комбинированное представление данных. Комбинированные модели.
- 10. Данные в ГИС. Хранение данных и их защита. Системы управления базами данных. Понятие об интегративных системах. "Интеллектуализация" ГИС. Создание экспертных систем.
- 11. Анализ данных и моделирование. Операции предпроцессорной обработки. Оверлейные операции.
- 12. Требования к ГИС и этапы проектирования. Примеры реализации ГИС. Глобальные проекты (Global Database Planning Project, GRID и др).
- 13. Международные программы (CORINE и др.). Национальные программы. Региональные ГИС. Локальные ГИС.
- 14. Краткий обзор программных средств, используемых в России. Коммерческие пакеты программ (ARC/INFO, ArcView, MicroStation, MapInfo, IDRISI, GeoGraf/GeoDraw, Панорама и др.).
- 15. Опыт применения ГИС для изучения окружающей среды (вопросы мониторинга и моделирования окружающей среды, экологических экспертиз хозяйственных проектов, моделирования миграции тяжелых металлов и радионуклидов в геосистемах и др.).
 - 16. Перспективы развития геоинформатики и геоинформационных систем.

Критерии оценивания ответа:

Зачтено -

Обучающийся уверенно отвечает на вопросы, иллюстрирует их примерами из выполненных лабораторных работ. Свободно ориентируется в базовой терминологии геониформатики и геоинформационных систем. Способен оперативно предлагать алгоритм решения задач из области геоэкологии и природопользования. Дополнительные вопросы не вызывают затруднений. Может допускать незначительные ошибки в ответах.

Не зачтено -

Обучающийся затрудняется отвечать на вопросы зачета, не может привести примеры, иллюстрирующие положения ответа. В терминологии геоинформатики и геоинформационных систем ориентируется с ошибками. Ответ на контрольно-измерительный материал содержит существенные ошибки. Дополнительные вопросы вызывают серьезные затруднения.

Технология проведения промежуточной аттестации включает случайный выбор КИМа, подготовку и устный ответ по теоретическим вопросам/, а также решение расчетной задачи с использованием вычислительной техники.

Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации:

для оценивания результатов обучения на зачете с оценкой используются следующие критерии:

- владение понятийным аппаратом данной области науки (теоретическими основами экологии человека);
- способность иллюстрировать ответ примерами, фактами, данными научных исследований:
- применять теоретические знания для решения практических задач в сфере оценки риска для здоровья человека, связанного с состоянием окружающей среды.

Для оценивания результатов обучения на зачете используется: «зачтено», «не зачтено».

Соотношение показателей, критериев и шкалы оценивания результатов обучения.

	Уровень	
Критерии оценивания компетенций	сформиро-	Шкала
	ванности	оценок
	компетенций	
Обучающийся уверенно отвечает на вопросы, иллюстрирует	Базовый	Зачтено
их примерами из выполненных лабораторных работ. Сво-	уровень	
бодно ориентируется в базовой терминологии геоинформа-		
тики и геоинформационных систем. Способен оперативно		
предлагать алгоритм решения задач из области геоэкологии		
и природопользования. Дополнительные вопросы не вызы-		
вают затруднений. Может допускать незначительные ошиб-		
ки в ответах.		
Обучающийся затрудняется отвечать на вопросы зачета, не	Пороговый	He
может привести примеры, иллюстрирующие положения от-	уровень	зачтено
вета. В терминологии геоинформатики и геоинформацион-		
ных систем ориентируется с ошибками. Ответ на контроль-		
но-измерительный материал содержит существенные ошиб-		
ки. Дополнительные вопросы вызывают серьезные затруд-		
нения.		